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Abstract

In this paper, we obtain a classification of irreducible strongly positive square-
integrable genuine representations of metaplectic groups over p-adic fields,
using a purely algebraic approach. Our results parallel those of Mœglin and
Tadić for classical groups, but their work relies on certain conjectures. On the
other hand, our results are complete and there are no additional conditions
or hypothesis. The important point to note here is that our results and
techniques can be used in the case of classical p-adic groups in a completely
analogous manner.
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1. Introduction

Admissible representations of metaplectic groups over p-adic fields have
recently been intensively studied by many authors and many results, mostly
similar to those related to the representation theory of classical groups ([3,
4, 7]), have been achieved. It is of particular interest to obtain knowledge
about the square-integrable representations of metaplectic groups, especially
about the irreducible ones, the so-called discrete series. In the papers [11, 12],
Mœglin and Tadić have classified discrete series of classical groups over p-
adic fields, assuming certain conjectures. It is of interest to know whether
there is an analogous classification for metaplectic groups and whether their
assumptions may be removed. The aim of this paper is to address these prob-
lems for an important type of square-integrable representation, namely the
strongly positive ones, which can be viewed as basic building blocks for all the
square-integrable representations. Important examples of strongly positive
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square-integrable representations are generalized Steinberg representations
and regular discrete series, which have been classified by Tadić in [19]. In
the Mœglin-Tadić classification, strongly positive discrete series correspond
to so-called alternating triples.

The main difficulty in carrying out their construction for the case of meta-
plectic groups is that the work of Mœglin ([11]) relies on the theory of L-
functions, which we do not have at our disposal in its full generality. Instead
of extending this theory to the metaplectic case, or using the very powerful
methods of theta-correspondence, we classify strongly positive discrete series
in completely algebraic way. The starting point of our approach is the anal-
ysis of certain useful embeddings of irreducible representations, which were
introduced first in [15] and further developed in [6]. We use mostly basic
techniques and our classification involves no hypotheses. This approach pro-
vides a rather combinatorial algorithm for constructing the classifying data,
which should be useful in other contexts, such as calculations with Jacquet
modules. The results of this paper may be straightforwardly extended to the
case of classical groups. Further, such a classification allows one to study
composition series of some generalized principal series of metaplectic groups,
as has been done in [14] in the case of classical groups.

Now we describe the contents of the paper, section by section.
In the next section we set up notation and terminology, while the third

section is devoted to the study of some embeddings of strongly positive rep-
resentations, which are crucial for our classification. These embeddings allow
us to realize a strongly positive representation as a (unique irreducible) sub-
representation of a parabolically induced representation of a special type. In
this section, we also prove some results concerning the intertwining operators.

In Section 4, we classify irreducible strongly positive representations whose
cuspidal support on a two-fold cover of the general linear group-side consists
only of the twists of one irreducible self-dual cuspidal representation. This
is done by further analysis of the embeddings introduced in the previous
section, which enables us to describe them in a more appropriate way. Im-
portant properties which are obtained by this analysis allow us to show the
uniqueness of such embeddings. In the fifth section, using the same ideas
as in the fourth section, we obtain our classification for general irreducible
strongly positive representations.

For the convenience of the reader, we cite the main classifications here.
We write ν for the character of GL(n, F ) defined by |det|F , where F is
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a local non-Archimedean field of a characteristic different than two. We de-
note by ˜GL(n, F ) a two-fold cover of the general linear group GL(n, F ). Let

σ denote an irreducible representation of metaplectic group S̃p(n), which
is as a set equal to Sp(n, F ) × µ2, where µ2 = {1,−1}. We assume that
σ is genuine, i.e., does not factor through µ2. A representation σ is said
to be strongly positive discrete series if for each embedding of the form
σ ↪→ νs1ρ1 × · · · × νsmρm o σcusp, where ρ1, . . . , ρm are irreducible genuine

cuspidal representations of ˜GL(n1, F ), . . . , ˜GL(nm, F ) and σcusp is an irre-
ducible genuine cuspidal representation of metaplectic group, we have si > 0
for i = 1, . . . ,m.

For an irreducible genuine unitary representation ρ of some ˜GL(n, F )
and real numbers a and b such that b − a is a non-negative integer, we call
the set ∆ = {νaρ, νa+1ρ, . . . , νbρ} a genuine segment. We denote by δ(∆)
the essentially square-integrable representation attached to the segment ∆
(as in [20]). Set e(∆) = a+b

2
. The following theorem describes important

embeddings of strongly positive discrete series.

Theorem 1.1. Let σ be a strongly positive genuine discrete series of some

S̃p(m). Then there exists a sequence of genuine segments ∆1, . . . ,∆k such
that e(∆1) = · · · = e(∆j1) < e(∆j1+1) = · · · = e(∆j2) < · · · < e(∆js+1) =
· · · = e(∆k) and an irreducible genuine cuspidal representation σcusp of some

˜Sp(nσcusp), such that σ is the unique irreducible subrepresentation of the in-
duced representation δ(∆1)× · · · × δ(∆k) o σcusp. (Here we allow k = 0.)
Also, if σ can be obtained as an irreducible subrepresentation of some induced
representation δ(∆′1) × · · · × δ(∆′l) o σ′cusp, where ∆′1, . . . ,∆

′
l is a sequence

of genuine segments such that e(∆′1) = · · · = e(∆′j′1
) < e(∆′j′1+1) = · · · =

e(∆′j′2
) < · · · < e(∆′j′

s′+1) = · · · = e(∆′l) and σ′cusp is an irreducible genuine

cuspidal representation of some ˜Sp(nσ′cusp), then k = l, s = s′, ji = j′i for
i ∈ {1, . . . , s}, σcusp ' σ′cusp and, for i ∈ {1, . . . , s} and js+1 = k, the sequence
∆ji+1, . . . ,∆ji+1−1 is a permutation of the sequence ∆′ji+1, . . . ,∆

′
ji+1−1.

Detailed analysis of the embeddings considered in the previous theorem
provides additional information about the strongly positive discrete series.
The following theorem completes our classification.

Theorem 1.2. We define a collection of pairs (Jord, σ′), where σ′ is an

irreducible genuine cuspidal representation of some S̃p(nσ′) and Jord has
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the following form: Jord =
⋃k
i=1

⋃ki
j=1{(ρi, b

(i)
j )}, where

• {ρ1, ρ2, . . . , ρk} is a (possibly empty) set of mutually nonisomorphic ir-

reducible self-dual cuspidal genuine representations of some ˜GL(m1, F ),

. . . , ˜GL(mk, F ) such that νa
′
ρiρi o σ′ reduces for a′ρi > 0 (this defines

a′ρi).

• ki = da′ρie, the smallest integer which is not smaller that a′ρi.

• For each i = 1, . . . , k, b
(i)
1 , . . . , b

(i)
ki

is a sequence of real numbers such

that a′ρi − b
(i)
j is an integer, for j = 1, 2, . . . , ki and −1 < b

(i)
1 < b

(i)
2 <

· · · < b
(i)
ki

.

There exists a bijective correspondence between the set of all genuine
strongly positive representations and the set of all pairs (Jord, σ′).

We describe this correspondence more precisely. The pair corresponding
to a strongly positive genuine representation σ will be denoted by (Jord(σ), σ′(σ)).

Suppose that cuspidal support of σ is contained in the set {νxρ1, . . . ,
νxρk, σcusp : x ∈ R}, with k minimal (here ρi denotes an irreducible cus-

pidal self-dual genuine representation of some ˜GL(nρi , F )).
Let a′ρi > 0, i = 1, 2, . . . , k, denote the unique positive s ∈ R such that the

representation νsρi o σcusp reduces. Set ki = da′ρie. For each i = 1, 2, . . . , k

there exists a unique increasing sequence of real numbers b
(i)
1 , b

(i)
2 , . . . , b

(i)
ki

,

where a′ρi − b
(i)
j is an integer, for j = 1, 2, . . . , ki and b

(i)
1 > −1, such that σ

is the unique irreducible subrepresentation of the induced representation

(
k∏
i=1

ki∏
j=1

δ([νa
′
ρi
−ki+jρi, ν

b
(i)
j ρi])) o σcusp.

Now, Jord(σ) =
⋃k
i=1

⋃ki
j=1{(ρi, b

(i)
j )} and σ′(σ) = σcusp.

The author would like to thank Goran Muić for suggesting the problem
and to Marcela Hanzer for several helpful comments. The author would also
like to thank the referee for reading the paper very carefully and helping to
improve the style of the presentation.
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2. Preliminaries

Let S̃p(n) be the metaplectic group of rank n, the unique non-trivial
two-fold central extension of symplectic group Sp(n, F ), where F is a non-
Archimedean local field of characteristic different from two. In other words,
the following holds:

1→ µ2 → S̃p(n)→ Sp(n, F )→ 1,

where µ2 = {1,−1}. The multiplication in S̃p(n) (which is as a set given
by Sp(n, F ) × µ2) is given by Rao’s cocycle ([17]). The topology of the
metaplectic groups is explained in detail in [8], Section 3.3.

In this paper we are interested only in genuine representations of S̃p(n)
(i.e., those which do not factor through µ2). So, let R(n) be the Grothendieck
group of the category of all admissible genuine representations of finite length

of S̃p(n) (i.e., a free abelian group over the set of all irreducible genuine

representations of S̃p(n)) and define R =
⊕

n≥0R(n).
Further, for an ordered partition s = (n1, n2, . . . , nk) of some m ≤ n,

we denote by Ps a standard parabolic subgroup of Sp(n, F ) (consisting of
block upper-triangular matrices), whose Levi factor equals GL(n1, F )×· · ·×
GL(nk, F )×Sp(n−|s|, F ), where |s| =

∑k
i=1 ni. Then the standard parabolic

subgroup P̃s of S̃p(n) is the preimage of Ps in S̃p(n). For the sake of com-
pleteness, we explicitly describe Levi factors of metaplectic groups. Let us
denote by M̃s the Levi factor of the parabolic subgroup P̃s. There is natural
epimorphism

φ : ˜GL(n1, F )× · · · × ˜GL(nk, F )× ˜Sp(n− |s|)→ M̃s

given by

([g1, ε1], . . . , [gk, εk], [h, ε]) 7→ [(g1, . . . , gk, h), ε1 · · · εkεβ],

with β =
∏

i<j(detgi, detgj)F (
∏k

i=1(detgi, x(h))F ), where x(h) is defined in
[17], Lemma 5.1, while (·, ·)F denotes the Hilbert symbol of the field F .

The Levi factor M̃s differs from the product ˜GL(n1, F )× · · · × ˜GL(nk, F )×
˜Sp(n− |s|) by a finite subgroup, which enables us to write every irreducible

genuine representation of M̃s in the form π1 ⊗ · · · ⊗ πk ⊗ σ, where the rep-

resentations π1, . . . , πk, σ are all genuine. The representation of S̃p(n) that

5



is parabolically induced from the representation π1 ⊗ · · · ⊗ πk ⊗ σ will be
denoted by π1 × · · · × πk o σ.

Let ˜GL(n, F ) be a double cover of GL(n, F ), where the multiplication is
given by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ). Here εi ∈ µ2, i = 1, 2.

Here and subsequently, α denotes the character of ˜GL(n, F ) given by α(g) =
(detg, detg)F = (detg,−1)F . For a deeper discussion of the properties of the
character α, which is a quadratic character that factors through GL(n, F ),
we refer the reader to Section 3 of [8] and the references given there.

By ν we mean the character of GL(k, F ) defined by |det|F . Let ρ1, . . . , ρn

denote irreducible cuspidal representations of some ˜GL(m1, F ), . . . , ˜GL(mn, F )

and σcusp an irreducible cuspidal representation of some S̃p(k). We say that
the representation σ belongs to the set D(ρ1, . . . , ρn;σcusp) if the cuspidal
support of σ is contained in the set {νxρ1, . . . , νxρn, σcusp : x ∈ R}.

An irreducible representation σ ∈ R is called strongly positive if for each
representation νs1ρ1× νs2ρ2×· · ·× νskρkoσcusp, where ρi, i = 1, 2, . . . , k are
irreducible cuspidal unitary genuine representations, σcusp ∈ R an irreducible
cuspidal representation and si ∈ R, i = 1, 2, . . . , k, such that

σ ↪→ νs1ρ1 × νs2ρ2 × · · · × νskρk o σcusp,

we have si > 0 for each i.
Irreducible strongly positive representations are often called strongly pos-

itive discrete series.

If ρ is an irreducible genuine unitary cuspidal representation of some
˜GL(m,F ), we say that ∆ = {νaρ, νa+1ρ, . . . , νa+kρ} is a genuine segment,

where a ∈ R and k ∈ Z≥0. Here and subsequently, we abbreviate {νaρ, νa+1ρ,
. . . , νa+kρ} as [νaρ, νa+kρ]. If a > 0, we call the genuine segment ∆ strongly
positive. We denote by δ(∆) the unique irreducible subrepresentation of
νa+kρ × νa+k−1ρ × · · · × νaρ. δ(∆) is also a genuine, essentially square-

integrable representation attached to ∆. Further, let ∆̃ = [ν−a−kρ̃, ν−aρ̃].

Then ∆̃ is also a genuine segment and we have δ̃(∆) = δ(∆̃), which follows
from [20], Proposition 3.3 and Chapter 4.1 of [8].

For every irreducible genuine cuspidal representation ρ of some ˜GL(m,F ),
there exists a unique e(ρ) ∈ R such that the representation ν−e(ρ)ρ is a unitary
cuspidal representation. From now on, let e([νaρ, νbρ]) = a+b

2
.

We take a moment to recall a metaplectic version of Tadić’s structure
formula (Proposition 4.5 from [8]), which enables us to calculate Jacquet
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modules of an induced representation. Let

Rgen = ⊕nR( ˜GL(n, F ))gen,

where R( ˜GL(n, F ))gen denotes the Grothendieck group of smooth genuine

representations of finite length of ˜GL(n, F ). We denote by m the linear ex-
tension to Rgen⊗Rgen of parabolic induction from a maximal parabolic sub-

group. Let σ denote an irreducible genuine representation of S̃p(n). Then
r(k)(σ) (the normalized Jacquet module of σ with respect to the standard

maximal parabolic subgroup P̃(k)) can be interpreted as a genuine represen-

tation of ˜GL(k, F ) × ˜Sp(n− k), i.e., is an element of Rgen ⊗ R. For such σ
we can introduce µ∗(σ) ∈ Rgen ⊗R by

µ∗(σ) =
n∑
k=0

s.s.(r(k)(σ))

(s.s. denotes the semisimplification) and extend µ∗ linearly to the whole of
R. For σ ∈ R(n) we sometimes write rG̃L(σ) for r(n)(σ).

Using Jacquet modules with respect to the maximal parabolic subgroups

of ˜GL(n, F ), we can also define m∗(π) =
∑n

k=0 s.s.(rk(π)) ∈ Rgen ⊗ Rgen,

for an irreducible genuine representation π of ˜GL(n, F ), and then extend
m∗ linearly to the whole of Rgen. Here rk(π) denotes Jacquet module of
the representation π with respect to parabolic subgroup whose Levi factor

is ˜GL(k, F ) × ˜GL(n− k, F ). We define κ : Rgen ⊗ Rgen → Rgen ⊗ Rgen by
κ(x⊗ y) = y⊗ x and extend contragredient ˜ to an automorphism of Rgen

in the natural way. Let M∗ : Rgen → Rgen be defined by

M∗ = (m⊗ id) ◦ (̃α⊗m∗) ◦ κ ◦m∗,

where α̃ means taking contragredient of the representation and then multi-
plying by the character α.

The following theorem is fundamental for our calculations with Jacquet
modules:

Theorem 2.1. For π ∈ Rgen and σ ∈ R, the following structure formula
holds

µ∗(π o σ) = M∗(π) o µ∗(σ).
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Using the previous theorem, we obtain:

Lemma 2.2. Let ρ be a cuspidal genuine representation of ˜GL(n, F ) and
a, b ∈ R such that a+b ∈ Z≥0. Let σ be an admissible genuine representation

of finite length of S̃p(m). Write µ∗(σ) =
∑

π,σ′ π ⊗ σ′. Then the following
hold:

M∗(δ([ν−aρ, νbρ])) =
b∑

i=−a−1

b∑
j=i

δ([ν−iαρ̃, νaαρ̃])×δ([νj+1ρ, νbρ])⊗δ([νi+1ρ, νjρ]),

µ∗(δ([ν−aρ, νbρ]) o σ) =
b∑

i=−a−1

b∑
j=i

∑
π,σ′

δ([ν−iαρ̃, νaαρ̃])× δ([νj+1ρ, νbρ])× π

⊗ δ([νi+1ρ, νjρ]) o σ′.

We omit δ([νxρ, νyρ]) if x > y.

The following fact, which follows directly from [8], will be used frequently:

for an irreducible genuine representation π of ˜GL(k, F ) and an irreducible

genuine representation σ of S̃p(n) in R we have

π o σ = απ̃ o σ. (1)

This important relation can also be obtained through the use of Muić’s ge-
ometric construction of intertwining operators ([16]), which is valid in more
general cases.

We also use the following equation:

m∗(δ([νaρ, νbρ])) =
b∑

i=a−1

δ([νi+1ρ, νbρ])⊗ δ([νaρ, νiρ]).

Note that multiplicativity of m∗ implies

m∗(
n∏
j=1

δ([νajρj, ν
bjρj])) =

n∏
j=1

(

bj∑
ij=aj−1

δ([νij+1ρj, ν
bjρj])⊗ δ([νajρj, νijρj])). (2)

Let us briefly recall the Langlands classification for two-fold covers of
general linear groups. As in [9], we favor the subrepresentation version of
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this classification over the quotient one. This version can be obtained using
Lemma 3.1 (i) of this paper and part 3 of Proposition 4.2 from [8].

First, for every irreducible essentially square-integrable representation δ of
˜GL(n, F ), there exists an e(δ) ∈ R such that the representation ν−e(δ)δ is uni-

tarizable. Suppose δ1, δ2, . . . , δk are irreducible, essentially square-integrable

representations of ˜GL(n1, F ), ˜GL(n2, F ), . . . , ˜GL(nk, F ) with e(δ1) ≤ e(δ2) ≤
. . . ≤ e(δk). Then the induced representation δ1 × δ2 × · · · × δk has a unique
irreducible subrepresentation, which we denote by L(δ1, δ2, . . . , δk). This ir-
reducible subrepresentation is called the Langlands subrepresentation, and it
appears with the multiplicity one in δ1×δ2×· · ·×δk. Every irreducible repre-

sentation π of ˜GL(n, F ) is isomorphic to some L(δ1, δ2, . . . , δk). Given π, the
representations δ1, δ2, . . . , δk are unique up to a permutation. If i1, i2, . . . , ik is
a permutation of 1, 2, . . . , k such that the representations δi1 × δi2 × · · · × δik
and δ1 × δ2 × · · · × δk are isomorphic, we also write L(δi1 , δi2 , . . . , δik) for
L(δ1, δ2, . . . , δk).

3. Embeddings of strongly positive representations and intertwin-
ing operators

In this section we investigate certain embeddings of strongly positive dis-
crete series, which represent the basis of our classification. The main re-
sults of this section enable us to study strongly positive discrete series using
parabolically induced representations of a special type. We apply ideas and
adapt some proofs from Sections 3 and 7 of [6] to our situation and the
metaplectic case, and give them here.

We first briefly discuss some intertwining operators. The following lemma
is analogous to Theorem 2.6 in [6].

Lemma 3.1. Assume that π1, . . . , πk are irreducible genuine representations

of ˜GL(m1, F ), . . . , ˜GL(mk, F ) and σ an irreducible genuine representation of

S̃p(n). Let m = m1 + · · ·+mk and l = m+ n. Then the following hold:
(i) Every irreducible quotient of π1× π2× · · · × πk is an irreducible subrepre-
sentation of πk × πk−1× · · · × π1. In particular, Hom ˜GL(m,F )

(π1× π2× · · · ×
πk, πk × πk−1 × · · · × π1) 6= 0.
(ii) Every irreducible quotient of π1× π2× · · · × πk o σ is an irreducible sub-
representation of απ̃1 × απ̃2 × · · · × απ̃k o σ. In particular, Hom ˜Sp(l,F )

(π1 ×
π2 × · · · × πk o σ, απ̃1 × απ̃2 × · · · × απ̃k o σ) 6= 0.
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Proof. Claim (i) follows from [8], by repeated application of Propositions
4.1 and 4.3 of that paper. Let us comment on the proof of (ii). Let τ be
an irreducible quotient of the representation π1 × π2 × · · · × πk o σ. Then

τ̃ ↪→ π̃1×π̃2×· · ·×π̃koσ̃. It is well known that the group GSp(l) acts on S̃p(l)
[13, II.1(3)]. As in Section 4 of [5], we choose an element η′ = (1, η) ∈ GSp(l),
where η ∈ GSp(l′) is an element with similitude equal to −1. The action

of such an element of the group GSp(l) on S̃p(l) extends to the action on
irreducible representations, which is (by [13, page 92]) equivalent to taking
contragredients. Thus, we obtain the inclusion

τ̃ η
′
↪→ απ̃1 × απ̃2 × · · · × απ̃k o σ̃η.

Since σ̃η ' σ, we have

τ ↪→ απ̃1 × απ̃2 × · · · × απ̃k o σ.

This completes the proof.

Now we turn our attention to embeddings of strongly positive discrete
series. The following lemma ([8], Proposition 4.4) ensures the existence of
embeddings of irreducible genuine representations:

Lemma 3.2. For an irreducible representation σ ∈ R, there exists an irre-
ducible genuine cuspidal representation ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ σcusp of some

M̃s, where s = (n1, n2, . . . , nk), ρi is a genuine irreducible cuspidal represen-

tation of ˜GL(ni, F ), i = 1, 2, . . . , k and σcusp ∈ R is an irreducible cuspidal
representation such that

σ ↪→ ρ1 × ρ2 × · · · × ρk o σcusp.

The following theorem provides very useful embeddings of strongly posi-
tive discrete series and gives their classifying data.

Theorem 3.3. Let σ ∈ R(n) denote a strongly positive discrete series. Then
there exists a sequence of strongly positive genuine segments ∆1,∆2, . . . ,∆k

satisfying 0 < e(∆1) ≤ e(∆2) ≤ · · · ≤ e(∆k) (we allow k = 0 here) and an
irreducible cuspidal representation σcusp ∈ R such that we have the following
embedding

σ ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆k) o σcusp.
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Proof. Using the previous lemma, we get the embedding σ ↪→ ρ1×ρ2×· · ·×
ρloσcusp; suppose σcusp ∈ R(n′). We consider all possible embeddings of the
form

σ ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆m) o σcusp,

where ∆1+∆2+· · ·+∆m = {ρ1, ρ2, . . . , ρl}, viewed as an equality of multisets.

Each δ(∆i) is an irreducible genuine representation of some ˜GL(ni, F )
(this defines ni), for i = 1, 2, . . . ,m. To every such embedding we attach
an n−n′-tuple (e(∆1), . . . , e(∆1), e(∆2), . . . , e(∆2), . . . , e(∆m), . . . , e(∆m)) ∈
Rn−n′ , where e(∆i) appears ni times.

Denote by

σ ↪→ δ(∆′1)× δ(∆′2)× · · · × δ(∆′m′) o σcusp (3)

a minimal such embedding with respect to the lexicographic ordering on
Rn−n′ (finiteness of the set of such embeddings gives the existence of a
minimal one). Obviously, e(∆′i) > 0, for i = 1, 2, . . . ,m′. In the follow-
ing, we show e(∆′1) ≤ e(∆′2) ≤ · · · ≤ e(∆′m′). To do this, suppose that
e(∆′j) > e(∆′j+1) for some 1 ≤ j < m′ − 1.

Lemma 3.1 provides an intertwining operator δ(∆′j)×δ(∆′j+1)→ δ(∆′j+1)×
δ(∆′j), which gives the following maps

σ ↪→ δ(∆′1)× · · · × δ(∆′j)× δ(∆′j+1)× · · · × δ(∆′m′) o σcusp

→ δ(∆′1)× · · · × δ(∆′j+1)× δ(∆′j)× · · · × δ(∆′m′) o σcusp.

The minimality of the embedding (3) implies that σ is in the kernel of previ-
ous intertwining operator. The existence of a non-zero kernel, together with
Propositions 4.2. and 4.3. from [8], yields that the segments ∆′j and ∆′j+1

are connected in the sense of Zelevinsky. So, we can write ∆′j = [νajρ, νbjρ],
∆′j+1 = [νaj+1ρ, νbj+1ρ], where 0 < aj+1 < aj < bj+1 < bj, and ρ ' ρi for some
1 ≤ i ≤ l. Now, using [20], we obtain that the kernel of previous intertwining
operator is isomorphic to

δ(∆′1)× · · · × δ([νajρ, νbj+1ρ])× δ([νaj+1ρ, νbjρ])× · · · × δ(∆′m′) o σcusp. (4)

Since e([νajρ, νbj+1ρ]) < e(∆j), the minimality of the embedding (3) implies
that σ is not a subrepresentation of the representation (4). This contradicts
our assumption and proves the theorem.
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We proceed by investigating further properties of the obtained embed-
dings.

Theorem 3.4. Let ∆1,∆2, . . . ,∆k denote a sequence of strongly positive
genuine segments satisfying 0 < e(∆1) ≤ e(∆2) ≤ · · · ≤ e(∆k) (we allow k =

0 here). Let σcusp be an irreducible cuspidal genuine representation of S̃p(n).
Then the induced representation δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp has a
unique irreducible subrepresentation, which we denote by δ(∆1, . . . ,∆k;σcusp).
Also, δ(∆1, . . . ,∆k;σcusp) ↪→ δ(∆1) o δ(∆2, . . . ,∆k;σcusp).

Proof. We assume that k > 0 (otherwise all claims are trivially true) and
write ∆i = [νaiρi, ν

biρi], i = 1, 2, . . . , k. Clearly, the strong positivity of
these segments implies 0 < ai ≤ bi. Further, let us introduce positive integers
j1 < j2 < . . . < js by

e(∆1) = · · · = e(∆j1) < e(∆j1+1) = · · · = e(∆j2) <

< · · · < e(∆js+1) = · · · = e(∆k).

It follows immediately that the representation

δ(∆1)× · · · × δ(∆j1)⊗ δ(∆j1+1)× · · · × δ(∆j2)⊗ · · · ⊗ σcusp (5)

is irreducible, and we show that it appears with multiplicity one in the
Jacquet module of δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp with respect to the
appropriate parabolic subgroup. This immediately proves the theorem. We
prove this claim using induction over k. We start with the case k = 1.

From Lemma 2.2 we get

µ∗(δ(∆1) o σcusp) =

b1∑
i=a1−1

b1∑
j=i

δ([ν−iαρ̃1, ν
−a1αρ̃1])× δ([νj+1ρ1, ν

b1ρ1])⊗

δ([νi+1ρ1, ν
jρ1]) o σcusp.

Therefore, there exist i and j, a1− 1 ≤ i ≤ j ≤ b1, such that δ(∆1)⊗σcusp ≤
δ([ν−iαρ̃1, ν

−a1αρ̃1])× δ([νj+1ρ1, ν
b1ρ1])⊗ δ([νi+1ρ1, ν

jρ1])oσcusp (recall that
σcusp is a cuspidal representation). Of course, we obtain i = j, while the
strong positivity of the segment ∆1 implies −i > −a1, i.e., i = a1 − 1. So,
δ(∆1)⊗ σcusp appears with multiplicity one in µ∗(δ(∆1) o σcusp).

Now, suppose that claim holds for all numbers less than k. We prove it
for k.
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Exactness and transitivity of Jacquet modules imply that for every irre-
ducible subquotient of the form (5) of the Jacquet module of the represen-
tation δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp with respect to the appropriate
parabolic subgroup, there is some irreducible representation π such that

µ∗(δ(∆1)× δ(∆2)× · · · × δ(∆k) o σcusp) ≥ δ(∆1)× · · · × δ(∆j1)⊗ π, (6)

where the Jacquet module of π with respect to the appropriate parabolic
subgroup contains the representation δ(∆j1+1)×· · ·×δ(∆j2)⊗· · ·⊗δ(∆js+1)×
· · · × δ(∆k)⊗ σcusp.

Now we take a closer look at the inequality (6). Applying Lemma 2.2,
we see that there are ai − 1 ≤ xi ≤ yi ≤ bi, i = 1, 2, . . . , k, such that the
following inequality holds:

k∏
i=1

(δ([ν−xiαρ̃i, ν
−aiαρ̃i])× δ([νyi+1ρi, ν

biρi])) ≥
j1∏
l=1

δ([νalρl, ν
blρl]). (7)

Because of the irreducibility of the right-hand side, we may assume a1 ≤
a2 ≤ . . . ≤ aj1 . Hence, the equality e(∆1) = e(∆2) = . . . = e(∆j1) yields
b1 ≥ b2 ≥ . . . ≥ bj1 . Comparing the cuspidal supports of both sides of the
inequality (7), we obtain the following equality of multisets:

k∑
i=1

([ν−xiαρ̃i, ν
−aiαρ̃i] + [νyi+1ρi, ν

biρi]) =

j1∑
l=1

[νalρl, ν
blρl]. (8)

The positivity of observed segments forces al > 0 for every l. We thus get
xi = ai − 1 for every i = 1, 2, . . . , k, so each segment [ν−xiαρ̃i, ν

−aiαρ̃i],
i = 1, 2, . . . , k, is empty.

Since the representation νa1ρ1 appears on the right-hand side of (8), it
must appear on the left-hand side. Since a1 is the lowest exponent on the
right-hand side, we obtain that there is some 1 ≤ i ≤ k such that yi + 1 = a1
and ρi ' ρ1. Observe that this implies ai ≤ a1. From this it may be
concluded that segment [νa1ρ1, ν

biρ1] appears on the left-hand side of (8),
so it has to appear on the right-hand side. Since b1 is the largest exponent
there, we get bi ≤ b1. We claim that bi = b1.

On the contrary, suppose that bi < b1. Then we must have e(∆i) =
ai+bi

2
< a1+b1

2
= e(∆1), which contradicts the assumption of the theorem.

In this way we get that the first non-empty segment on the left-hand
side of (8) equals the first segment on the right-hand side. After canceling
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this segments on both sides, we continue in the same fashion to obtain xi =
ai − 1 and yi = bi, for i > j1. Thus, δ(∆1) × · · · × δ(∆j1) ⊗ π appears in
µ∗(δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp) only as an irreducible subquotient
of the representation δ(∆1)× · · · × δ(∆j1)⊗ δ(∆j1+1)× · · · × δ(∆k) o σcusp.

By an argument similar to that in the proof of Lemma 7.4 from [6], we
conclude that the multiplicity of δ(∆1)×· · ·×δ(∆j1)⊗π in µ∗(δ(∆1)×δ(∆2)×
· · ·×δ(∆k)oσcusp) equals the multiplicity of π in δ(∆j1+1)×δ(∆j1+2)×· · ·×
δ(∆k) o σcusp.

Combining (6) with (7), we get π ≤
∏k

i=j1+1 δ([ν
aiρi, ν

biρi])oσcusp, i.e., π
is a subquotient of the representation δ(∆j1+1)×δ(∆j1+2)×· · ·×δ(∆k)oσcusp,
which contains the representation δ(∆j1+1)× · · · × δ(∆j2)⊗ · · · ⊗ δ(∆js+1)×
· · ·× δ(∆k)⊗σcusp in its Jacquet module. By the inductive assumption, such
a representation π appears in δ(∆j1+1)× δ(∆j1+2)× · · · × δ(∆k)o σcusp with
multiplicity one. This proves our claim, which completes the proof of the
theorem.

Theorems 3.3 and 3.4 may be summarized by saying that each genuine
strongly positive discrete series is isomorphic to some δ(∆1, . . . ,∆k;σcusp),
the unique irreducible subrepresentation of the parabolically induced repre-
sentation δ(∆1) × · · · × δ(∆k) o σcusp, where e(∆1) ≤ . . . ≤ e(∆k). Further
examination of these induced representations results in the classification of
strongly positive discrete series, which is given in the following two sections.

4. Classification of strongly positive discrete series: D(ρ;σcusp)
case

In this section, we give a precise classification of a special case of the
strongly positive discrete series, those belonging to the set D(ρ;σcusp), where

ρ is an irreducible genuine cuspidal representation of ˜GL(nρ, F ), while σcusp

is an irreducible cuspidal genuine representation of ˜Sp(nσcusp) (this defines nρ
and nσcusp). The partial cuspidal support of every representation belonging
to the set D(ρ;σcusp) is the representation σcusp, while the rest of cuspidal
support consists of twists of the representation ρ. We also assume that ρ is
self-dual, which yields αρ̃ ' ρ. The results of [7] imply that there is a unique
a ≥ 0 such that νaρ o σcusp reduces. We fix this non-negative real number
a through this section. Let kρ denote dae, the smallest integer which is not
smaller that a. Observe that kρ ≥ 0.
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We obtain the classification by using the embeddings of strongly posi-
tive representations, which have been described in the previous section. We
suppose that σ ∈ D(ρ;σcusp) is an irreducible strongly positive genuine rep-
resentation in the whole section.

First, we prove some technical results related to representations of double-
covers of general linear groups, which will be needed in the analysis of embed-
dings of strongly positive representations. Some of these results are closely
related to those in Section 1.3 of [9].

Lemma 4.1. Let ∆1 and ∆2 denote strongly positive genuine segments, ∆1 =
[νa1−1ρ, νb1ρ], ∆2 = [νa1ρ, νb2ρ], where b1 < b2. Then the representation
νa1−1ρ× L(δ(∆1), δ(∆2)) is irreducible and isomorphic to the representation
L(νa1−1ρ, δ(∆1), δ(∆2)).

Proof. Let us denote by π the representation νa1−1ρ×L(δ(∆1), δ(∆2)). Ob-
viously, π ↪→ νa1−1ρ× δ(∆1)× δ(∆2).

From [9], Lemma 1.3.1 (or [10], Lemma 3.3), it follows that the only
possible irreducible subquotients of π are

π1 = L(νa1−1ρ, δ([νa1−1ρ, νb1ρ]), δ([νa1ρ, νb2ρ])),

π2 = L(νa1−1ρ, δ([νa1−1ρ, νb2ρ]), δ([νa1ρ, νb1ρ])),

π3 = L(δ([νa1−1ρ, νb1ρ]), δ([νa1−1ρ, νb2ρ])).

The Langlands classification shows that π1 appears with multiplicity one in
π. Therefore, it remains to show that π2, π3 do not appear. First we address
the case b1 ≥ a1.

Observe that π2 = δ([νa1−1ρ, νb2ρ]) × L(νa1−1ρ, δ([νa1ρ, νb1ρ])) and π3 =
δ([νa1−1ρ, νb1ρ])× δ([νa1−1ρ, νb2ρ]).

The inclusion π2 ↪→ δ([νa1−1ρ, νb2ρ])× νa1−1ρ× δ([νa1ρ, νb1ρ]) enables us
to conclude that m∗(π2) contains νa1−1ρ⊗ δ([νa1−1ρ, νb2ρ])× δ([νa1ρ, νb1ρ]).

Suppose that π2 appears in π. Then m∗(π) also contains the above rep-
resentation. In the appropriate Grothendieck group we have

δ([νa1−1ρ, νb1ρ])× δ([νa1ρ, νb2ρ]) = L(δ([νa1−1ρ, νb1ρ]), δ([νa1ρ, νb2ρ])) +

δ([νa1−1ρ, νb2ρ])× δ([νa1ρ, νb1ρ]).

Analyzing m∗(δ([νa1−1ρ, νb1ρ]) × δ([νa1ρ, νb2ρ])) using formula (2), we
conclude that the only term of the form νa1−1ρ ⊗ θ in m∗(π) is νa1−1ρ ⊗
L(δ(∆1), δ(∆2)). On the other hand, the only term of this form in m∗(π2)
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is the irreducible representation νa1−1ρ ⊗ δ([νa1−1ρ, νb2ρ]) × δ([νa1ρ, νb1ρ]).
Since b1 6= b2, these representations are not the same, so π2 cannot appear
as a subquotient of π.

Further, observe that m∗(π3) ≥ δ([νa1ρ, νb1ρ])× δ([νa1ρ, νb2ρ])⊗ νa1−1ρ×
νa1−1ρ. Suppose that π3 is a subquotient of π. Then the multiplicativity ofm∗

implies that m∗(L(δ([νa1−1ρ, νb1ρ]), δ([νa1ρ, νb2ρ]))) contains δ([νa1ρ, νb1ρ])×
δ([νa1ρ, νb2ρ])⊗ νa1−1ρ.

Analyzing m∗(δ([νa1−1ρ, νb1ρ]) × δ([νa1ρ, νb2ρ])) again, we conclude that
the representation δ([νa1ρ, νb1ρ])×δ([νa1ρ, νb2ρ])⊗νa1−1ρ appears there with
multiplicity one. Since it obviously appears in m∗(δ([νa1−1ρ, νb2ρ])× δ([νa1ρ,
νb1ρ])), we get a contradiction, so π3 is not subquotient of π.

This gives π = π1 and proves the lemma in this case.

If b1 = a1 − 1, then π2 = π3 = νa1−1ρ × δ([νa−1ρ, νb2ρ]). In the same
manner as before we can see that π = π1, and the lemma follows.

Lemma 4.2. Let ∆1,∆2, . . . ,∆k denote genuine segments, such that e(∆1) ≤
e(∆2) ≤ · · · ≤ e(∆k). Then the contragredient of the representation

L(δ(∆1), δ(∆2), . . . , δ(∆k)) is isomorphic to L(δ(∆̃k), δ(∆̃k−1), . . . , δ(∆̃1)).

Proof. Taking contragredients of the inclusion

L(δ(∆1), δ(∆2), . . . , δ(∆k)) ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆k),

we get that the contragredient of the representation L(δ(∆1), δ(∆2), . . . , δ(∆k))

is an irreducible quotient of the representation δ(∆̃1)× δ(∆̃2)× · · · × δ(∆̃k).
Applying Lemma 3.1 (i), we get that the contragredient of L(δ(∆1), δ(∆2), . . . ,

δ(∆k)) can be realized as a subrepresentation of the representation δ(∆̃k)×
δ(∆̃k−1) × · · · × δ(∆̃1). Since the latter representation contains the unique

irreducible subrepresentation L(δ(∆̃k), δ(∆̃k−1), . . . , δ(∆̃1)), the lemma fol-
lows.

Proposition 4.3. Let ∆1,∆2, . . . ,∆k denote genuine segments, such that
e(∆1) ≤ e(∆2) ≤ · · · ≤ e(∆k). Further, let ∆i = [νa1+i−1ρ, νbiρ], for
i = 1, 2, . . . , k, and b1 < b2 < · · · < bk. Then the representation νa1ρ ×
L(δ(∆1), δ(∆2), . . . , δ(∆k)) is irreducible.

Proof. Let us define π = L(νa1ρ, δ(∆1), δ(∆2), . . . , δ(∆k)). Since e(νa1ρ) ≤
e(∆1), we obtain that π is the unique irreducible subrepresentation of νa1ρ×
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L(δ(∆1), δ(∆2), . . . , δ(∆k)). Taking contragredients, we get that π̃ is the

unique irreducible quotient of ν−a1 ρ̃× L(δ(∆̃k), δ(∆̃k−1), . . . , δ(∆̃1)).

Since δ(∆̃k) × · · · × δ(∆̃3) × L(δ(∆̃2), δ(∆̃1)) is a subrepresentation of

δ(∆̃k)×δ(∆̃k−1)×· · ·×δ(∆̃1), inducing in stages gives the following inclusion:

ν−a1 ρ̃× L(δ(∆̃k), . . . , δ(∆̃1)) ↪→ ν−a1 ρ̃× δ(∆̃k)× · · · × L(δ(∆̃2), δ(∆̃1)). (9)

Contragredience and the assumptions on the ends of the segments ∆1, . . . ,∆k,
imply ν−a1 ρ̃× δ(∆̃i) ' δ(∆̃i)× ν−a1 ρ̃, for i ≥ 3. Thus, we conclude that the

representation on the right-hand side of (9) is isomorphic to δ(∆̃k) × · · · ×
δ(∆̃3)× ν−a1 ρ̃× L(δ(∆̃2), δ(∆̃1)).

Since the representation ν−a1 ρ̃ × L(δ(∆̃2), δ(∆̃1)) is isomorphic to the
contragredient of the representation νa1ρ×L(δ(∆1), δ(∆2)), Lemma 4.1 tells

us that we can commute representations ν−a1 ρ̃ and L(δ(∆̃2), δ(∆̃1)). Here,
we have applied [2], Corollary 2.1.13, which holds in greater generality and
states that an admissible representation is irreducible if and only if its con-
tragredient is. Combining this with (9), we deduce following inclusions:

ν−a1 ρ̃× L(δ(∆̃k), . . . , δ(∆̃1)) ↪→ δ(∆̃k)× · · · × L(δ(∆̃2), δ(∆̃1))× ν−a1 ρ̃
↪→ δ(∆̃k)× · · · × δ(∆̃2)× δ(∆̃1)× ν−a1 ρ̃.

On the other hand, according to Lemma 4.2,

π̃ = L(δ(∆̃k), δ(∆̃k−1), . . . , δ(∆̃1), ν
−a1 ρ̃),

which implies that π̃ is the unique irreducible subrepresentation of ν−a1 ρ̃ ×
L(δ(∆̃k), . . . , δ(∆̃1)). Now we are in position to conclude that π̃ is both
the unique irreducible quotient and the unique irreducible subrepresentation
of ν−a1 ρ̃ × L(δ(∆̃k), . . . , δ(∆̃1)). Since it appears with multiplicity one, we

deduce that ν−a1 ρ̃× L(δ(∆̃k), . . . , δ(∆̃1)) is irreducible.
Taking the contragredient finishes the proof.

Now we are ready to give a precise description of important embeddings
of strongly positive genuine discrete series.

Theorem 4.4. Let σ ∈ D(ρ, σcusp) denote an irreducible strongly positive
genuine representation. Let ∆1,∆2, . . . ,∆k denote the sequence of strongly
positive genuine segments, where 0 < e(∆1) ≤ e(∆2) ≤ · · · ≤ e(∆k), such
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that σ is the unique irreducible subrepresention of the induced representation
δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp (i.e., σ = δ(∆1,∆2, . . . ,∆k;σ)). Write
∆i = [νaiρ, νbiρ]. Then, ai = a− k + i and bi < bi+1. Also, k ≤ dae.

Proof. Let us consider first the possibility a = 0. The inclusion σ ↪→
δ([νa1ρ, νb1ρ])× · · · × δ([νakρ, νbkρ]) o σcusp gives

σ ↪→ νb1ρ× · · · × νa1ρ× · · · × νbkρ× · · · × νakρo σcusp.

By the definition of the segment ∆k, the representation νakρ o σcusp is irre-
ducible (we have supposed a = 0), so (1) leads to νakρoσcusp ' ν−akρoσcusp.
Strong positivity for σ now shows that k = 0. We conclude that if ρoσcusp re-
duces, then the only irreducible strongly positive representation in D(ρ;σcusp)
is σcusp. In what follows we assume that the representation νaρoσcusp reduces
for a > 0.

The proof is by induction on k. The case k = 0 is clear.
Assume k = 1. Then

σ ↪→ δ([νa1ρ, νb1ρ]) o σcusp ↪→ νb1ρ× νb1−1ρ× · · · × νa1ρo σcusp.

If a1 6= a, then (1) implies νa1ρ o σcusp ' ν−a1ρ × σcusp. In this way, we
obtain the embedding

σ ↪→ νb1ρ× νb1−1ρ× · · · × ν−a1ρo σcusp,

which contradicts the strong positivity of σ. This implies a1 = a.
We also comment on the case k = 2. Now we have σ ↪→ δ([νa1ρ, νb1ρ])×

δ([νa2ρ, νb2ρ]) o σcusp. As in the previous case, we conclude a2 = a. Since
δ(∆2;σcusp) is a subrepresentation of δ([νaρ, νb2ρ])oσcusp, induction in stages
gives

δ([νa1ρ, νb1ρ]) o δ([νaρ, νb2ρ];σcusp) ↪→ δ([νa1ρ, νb1ρ])× δ([νaρ, νb2ρ]) o σcusp.

Since σ is the unique irreducible subrepresentation of δ([νa1ρ, νb1ρ]) ×
δ([νaρ, νb2ρ]) o σcusp, we deduce σ ↪→ δ([νa1ρ, νb1ρ]) o δ([νaρ, νb2ρ];σcusp).

This gives us the following embedding:

σ ↪→ δ([νa1+1ρ, νb1ρ])× νa1ρo δ([νaρ, νb2ρ];σcusp).

The strong positivity of the representation σ and (1) imply that the rep-
resentation νa1ρ o δ([νaρ, νb2ρ];σcusp) reduces. Since a1 > 0, part (ii) of
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Proposition 13.1 from [18] forces a1 ∈ {a − 1, b2 + 1}. Namely, the argu-
ments used there rely on the Jacquet module methods which are applicable

for the group S̃p(n). Observe that representation δ(∆2;σcusp) coincides with
the generalized Steinberg representation that was studied there.

The assumption a1 = b2 + 1 implies e(∆1) > e(∆2), which contradicts
the assumptions of the theorem. So, a1 = a− 1. It remains to show b1 < b2.
If not, the segments [νa−1ρ, νb1ρ] and [νaρ, νb2ρ] would not be linked, which
gives the embedding σ ↪→ δ([νaρ, νb2ρ])× δ([νa−1ρ, νb1ρ]) o σcusp. We obtain
that this is impossible in the same way as in the case k = 1.

Suppose that the claim holds for all numbers less than k, where k ≥ 3.
We prove it for k.

Since σ ↪→ δ([νa1ρ, νb1ρ]) o δ([νa2ρ, νb2ρ], . . . , [νakρ, νbkρ];σcusp), strong
positivity for σ implies that the representation δ([νa2ρ, νb2ρ], . . . , [νakρ, νbkρ];
σcusp) is also strongly positive. Since δ([νa2ρ, νb2ρ], . . . , [νakρ, νbkρ];σcusp)
is a subrepresentation of δ([νa2ρ, νb2ρ]) × · · · × δ([νakρ, νbkρ]) o σcusp and
e([νa2ρ, νb2ρ]) ≤ . . . ≤ e([νakρ, νbkρ]), the inductive assumption implies ai =
a− k + i, for i = 2, . . . , k, and b2 < · · · < bk.

We next determine a1. There are several possibilities:

(i) 0 < a1 < a− k + 1: We shall now use repeatedly the fact that νm1ρ×
δ([νm2ρ, νm3ρ]) for m1,m2,m3 ∈ R is irreducible if m1 < m2 − 1 < m3,
to obtain the following embeddings and isomorphisms:

σ ↪→ δ([νa1ρ, νb1ρ])× δ([νa−k+2ρ, νb2ρ])× · · · × δ([νaρ, νbkρ]) o σcusp

↪→ δ([νa1+1ρ, νb1ρ])× νa1ρ× δ([νa−k+2ρ, νb2ρ])× · · · ×
δ([νaρ, νbkρ]) o σcusp

' δ([νa1+1ρ, νb1ρ])× δ([νa−k+2ρ, νb2ρ])× νa1ρ× · · · ×
δ([νaρ, νbkρ]) o σcusp

...

' δ([νa1+1ρ, νb1ρ])× δ([νa−k+2ρ, νb2ρ])× · · · × δ([νaρ, νbkρ])×
νa1ρo σcusp

' δ([νa1+1ρ, νb1ρ])× δ([νa−k+2ρ, νb2ρ])× · · · × δ([νaρ, νbkρ])×
ν−a1ρo σcusp

↪→ νb1ρ× · · · × νaρ× ν−a1ρo σcusp

which contradicts the strong positivity of σ.
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(ii) a1 = a − k + 2: Since L(δ(∆2), . . . , δ(∆k)) is the unique irreducible
subrepresentation of δ(∆2)× · · · × δ(∆k), inducing in stages gives

L(δ(∆2), . . . , δ(∆k)) o σcusp ↪→ δ(∆2)× · · · × δ(∆k) o σcusp

and

δ(∆1)×L(δ(∆2), . . . , δ(∆k))oσcusp ↪→ δ(∆1)×δ(∆2)×· · ·×δ(∆k)oσcusp.

Now, σ ' δ(∆1,∆2, . . . ,∆k;σcusp) yields

σ ↪→ δ(∆1)× L(δ(∆2), . . . , δ(∆k)) o σcusp.

It follows that σ is subrepresentation of δ([νa−k+3ρ, νb1ρ])× νa−k+2ρ×
L(δ([νa−k+2ρ, νb2ρ]), . . . , δ([νaρ, νbkρ]) o σcusp.

According to Proposition 4.3, this representation is isomorphic to the
representation δ([νa−k+3ρ, νb1ρ])×L(δ([νa−k+2ρ, νb2ρ]), . . . , δ([νaρ, νbkρ])
×νa−k+2ρoσcusp, which is further, because a−k+2 < a, isomorphic to
δ([νa−k+3ρ, νb1ρ])×L(δ([νa−k+2ρ, νb2ρ]), . . . , δ([νaρ, νbkρ])× ν−a+k−2ρo
σcusp.

Since k−a−2 < 0, we obtain a contradiction with the strong positivity
of the representation σ.

(iii) a − k + 2 < a1: The assumption e(∆1) ≤ e(∆2) gives b1 < b2. Thus,
the segments ∆1 and ∆2 are not linked and the representations δ(∆1)×
δ(∆2)× · · ·× δ(∆k)o σcusp and δ(∆2)× δ(∆1)× · · ·× δ(∆k)o σcusp are
isomorphic. Since e(∆1) ≤ e(∆3), in the same way as before we get

σ ↪→ δ(∆2) o δ(∆1,∆3, . . . ,∆k;σcusp).

By the inductive assumption, the representation δ(∆1,∆3, . . . ,∆k;σcusp)
is not strongly positive. It follows that σ is not strongly positive, which
is impossible.

Finally, we get a1 = a− k + 1.

The assumption b1 ≥ b2 leads to a contradiction in the same way as in
the case a − k + 2 < a1 (because now the segment [νa−k+1ρ, νb1ρ] contains
the segment [νa−k+2ρ, νb2ρ]). Thus, b1 must be less than b2.

Suppose that the remaining claim of the theorem is false, i.e., suppose
k > dae. We have two possibilities:
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(i) ai = a − k + i, for i = 1, 2, . . . , k. This gives a1 ≤ 0. Since σ is a
subrepresentation of δ(∆1)× δ(∆2)× · · · × δ(∆k) o σcusp, we have

σ ↪→ νb1ρ× · · · × νa1ρ× νb2ρ× · · · × νaρo σcusp,

contradicting the strong positivity of σ.

(ii) There is some i ∈ {1, 2, . . . , k} such that ai 6= a − k + i. Let x denote
the largest such i. Obviously, σ is a subrepresentation of the induced
representation δ(∆1) × · · · × δ(∆x−1) o δ(∆x,∆x+1, . . . ,∆k;σcusp) (we
omit δ(∆x−1) if x equals 1). From what has already been proved, we
conclude that δ(∆x,∆x+1, . . . ,∆k;σcusp) is not strongly positive, con-
tradicting strong positivity of σ.

This completes the proof.

Note that we have actually proved e(∆1) < e(∆2) < · · · < e(∆k).

Using the above description of the observed embedding, we prove its
uniqueness:

Theorem 4.5. For an irreducible strongly positive genuine representation
σ ∈ D(ρ;σcusp), there exist a unique sequence of strongly positive genuine seg-
ments ∆1,∆2, . . . ,∆k, with 0 < e(∆1) ≤ e(∆2) ≤ · · · ≤ e(∆k), and a unique
irreducible cuspidal representation σ′ ∈ R such that σ ' δ(∆1,∆2, . . . ,∆k;σ

′).

Proof. The uniqueness of the partial cuspidal support implies σ′ ' σcusp.
Further, suppose that there are two sequences of strongly positive genuine
segments, ∆1,∆2, . . . ,∆k and ∆′1,∆

′
2, . . . ,∆

′
l, where e(∆1) ≤ e(∆2) ≤ · · · ≤

e(∆k) and e(∆′1) ≤ e(∆′2) ≤ · · · ≤ e(∆′l), such that

σ ↪→ δ(∆1)× δ(∆2)× · · · × δ(∆k) o σcusp (10)

and

σ ↪→ δ(∆′1)× δ(∆′2)× · · · × δ(∆′l) o σcusp, (11)

where σ is the unique irreducible subrepresentation of the above induced
representations. Using Theorem 4.4, we show that k = l and ∆i = ∆′i, for
i = 1, 2, . . . , k. Observe that the previous theorem implies that we can write
∆i = [νa−k+iρ, νbiρ] and ∆′j = [νa−l+jρ, νb

′
jρ], where bi < bi+1 and b′j < b′j+1.

First we prove that right-hand sides in (10) and (11) contain an equal
number of segments. Suppose on the contrary, k 6= l. There is no loss of

21



generality in assuming k < l, which gives a − k + 1 > a − l + 1. From
(11) we deduce that the Jacquet module of σ with respect to the appropri-
ate parabolic subgroup has to contain the irreducible representation δ(∆′1)⊗
δ(∆′2)⊗· · ·⊗ δ(∆′l)⊗σcusp. Now, transitivity and exactness of Jacquet mod-
ules, applied to (10), imply that there is some irreducible member δ(∆′1)⊗ τ
of µ∗(δ(∆1) × δ(∆2) × · · · × δ(∆k) o σcusp) such that the representation
δ(∆′2)⊗ · · · ⊗ δ(∆′l)⊗ σcusp is contained in the Jacquet module of τ .

Lemma 2.2 shows that there are a− k + i− 1 ≤ xi ≤ yi ≤ bi such that

k∏
i=1

(δ([ν−xiρ, ν−a+k−iρ])× δ([νyi+1ρ, νbiρ])) ≥ δ([νa−l+1ρ, νb
′
1ρ]).

Looking at cuspidal supports on both sides of the previous inequality we get a
contradiction, because the representation νa−l+1ρ appears on the right-hand
side, but the index a− l+ 1 is less then each positive index appearing on the
left-hand side. This proves k = l.

Further, since the Jacquet module of σ contains the representation δ(∆1)⊗
δ(∆2) ⊗ · · · ⊗ δ(∆k) ⊗ σcusp, there is an irreducible member δ(∆1) ⊗ τ1 of
µ∗(δ(∆1)× δ(∆2)× · · · × δ(∆k) o σcusp) such that the Jacquet module of τ1
with respect to the appropriate parabolic subgroup contains δ(∆2) ⊗ · · · ⊗
δ(∆k) ⊗ σcusp. Using Theorem 4.4, it can be proved in a similar way as in
the proof of Theorem 3.4 that τ1 ≤ δ(∆2)× · · · × δ(∆k) o σcusp, the detailed
verification being left to the reader.

In the same way, we conclude that in µ∗(δ(∆′1)×δ(∆′2)×· · ·×δ(∆′k)oσcusp)
there appears an irreducible representation δ(∆1) ⊗ τ ′1 such that Jacquet
module of τ ′1 with respect to the appropriate parabolic subgroup contains
δ(∆2) ⊗ · · · ⊗ δ(∆k) ⊗ σcusp. Applying Lemma 2.2 to the right-hand side of
(11), we get that there are a− k + i− 1 ≤ x′i ≤ y′i ≤ b′i such that

k∏
i=1

(δ([ν−x
′
iρ, ν−a+k−iρ])× δ([νy′i+1ρ, νb

′
iρ])) ≥ δ([νa−k+1ρ, νbiρ]).

Looking at cuspidal supports on both sides of previous inequality, we deduce
that x′i = a − k + i − 1. Since y′i + 1 > a − k + 1 for i > 1, it follows that
y′1 = a − k. This gives b′1 ≥ b1. Reversing roles, one gets b1 ≥ b′1. It follows
that ∆1 = ∆′1.

Also, this yields τ ′1 ≤ δ(∆′2)× · · · × δ(∆′k)o σcusp and υ1 ≤ δ(∆2)× · · · ×
δ(∆k) o σcusp.
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Proceeding in the same way, we see that there is an irreducible represen-
tation δ(∆2) ⊗ τ ′2 appearing in µ∗(τ ′1), such that Jacquet module of τ ′2 with
respect to the appropriate parabolic subgroup contains the representation
δ(∆3)⊗ · · · ⊗ δ(∆k)⊗ σcusp. Since µ∗(τ ′1) ≤ µ∗(δ(∆′2)× · · · × δ(∆′k) o σcusp),
applying Lemma 2.2 again we get b′2 ≤ b2. Going back to subquotients of
Jacquet modules of the representation on the right-hand side of (10), we de-
duce that in µ∗(υ′1) there appears an irreducible representation δ(∆′2) ⊗ υ′2
such that Jacquet module of τ ′2 contains δ(∆′3)⊗· · ·⊗δ(∆′k)⊗σcusp. A further
application of Lemma 2.2 gives b2 ≤ b′2. This implies ∆2 = ∆′2.

We continue in the same fashion to obtain ∆i = ∆′i, for i = 1, 2, . . . , k.
This completes the proof.

Theorems 4.4 and 4.5 may be summarized by saying that to each strongly
positive genuine discrete series σ ∈ D(ρ;σcusp) we have attached an increasing
sequence of real numbers b1, b2, . . . , bkρ , where b1 > −1 and bi − a is an
integer for every i ∈ {1, 2, . . . , kρ}, such that σ is the unique irreducible
subrepresentation of the induced representation

δ([νa−kρ+1ρ, νb1ρ])× δ([νa−kρ+2ρ, νb2ρ])× · · · × δ([νaρ, νbkρρ]) o σcusp. (12)

Observe that some segments in (12) may be empty, i.e., we allow the situation
bi < a− kρ + i for some i ∈ {1, 2, . . . , kρ}. The above listed properties of the
numbers bi imply that bi < a−kρ+i is equivalent to bi = a−kρ+i−1. In that
case, the representation δ([νa−kρ+iρ, νbiρ]) may be excluded from (12). It is
used just to write our classification in a more uniform way. Also, bi ≥ a−kρ+i
forces bj ≥ a − kρ + j for j ≥ i, while bi < a − kρ + i forces bj < a − kρ + j
for j ≤ i.

We denote by SP (ρ;σcusp) the set of all strongly positive genuine dis-
crete series in D(ρ;σcusp). Also, let Jordρ stand for the set of all increasing
sequences b1, b2, . . . , bkρ , where bi ∈ R, bi − a ∈ Z, for i = 1, 2, . . . , kρ, and
−1 < b1 < b2 < . . . < bkρ .

The previous discussion and Theorem 4.5 imply that we have obtained a
mapping from SP (ρ;σcusp) to Jordρ. The injectivity of this mapping follows
from Theorem 4.4.

In what follows, we prove the surjectivity of this mapping in pretty much
the same way as in Chapter 7 of [12].

23



Let b′1, b
′
2, . . . , b

′
kρ

denote an increasing sequence appearing in Jordρ. The-
orem 3.4 implies that the induced representation

δ([νa−kρ+1ρ, νb
′
1ρ])× δ([νa−kρ+2ρ, νb

′
2ρ])× · · · × δ([νaρ, νb

′
kρρ]) o σcusp (13)

has a unique irreducible subrepresentation, which we denote by σ(b′1,...,b′kρ ).

The desired surjectivity is a direct consequence of the following theorem.

Theorem 4.6. The representation σ(b′1,...,b′kρ ) is strongly positive.

Proof. We prove this theorem using a two-fold inductive procedure - the
first induction is over the number of non-empty segments appearing in the
induced representation (13) and the second induction is over the number of
elements of the first non-empty segment (the one with the smallest exponent
in the twist of ρ).

If there are no non-empty segments in (13), then σ(b′1,...,b′kρ ) ' σcusp and

the claim follows. Suppose that the claim holds for less then n non-empty
segments appearing in (13). We prove it for n non-empty segments.

First we deal with the case b′kρ−n+1 = a − n + 1. The representation

δ([νa−n+2ρ, ν
b′kρ−n+2ρ]) × · · · × δ([νaρ, ν

b′kρρ]) o σcusp contains a unique irre-
ducible subrepresentation, which we for simplicity denote by σ′. By the in-
ductive assumption, σ′ is strongly positive. Clearly, σ(b′1,...,b′kρ ) ↪→ νa−n+1ρoσ′.
This implies

rG̃L(σ(b′1,...,b′kρ )) ≤ (νa−n+1ρ+ ν−a+n−1ρ)× rG̃L(σ′). (14)

We again proceed inductively, by the number of elements in the segment

[νa−n+2ρ, ν
b′kρ−n+2ρ].

If a−n+ 2 = b′kρ−n+2, then σ(b′1,...,b′kρ ) is a subrepresentation of νa−n+1ρ×
νa−n+2ρ × δ([νa−n+3ρ, ν

b′kρ−n+3ρ]) × · · · × δ([νaρ, ν
b′kρρ]) o σcusp. The repre-

sentation δ([νa−n+3ρ, ν
b′kρ−n+3ρ]) × · · · × δ([νaρ, νb

′
kρρ]) o σcusp has a unique

irreducible subrepresentation, which is strongly positive by the inductive as-
sumption, and will be denoted by σ′′. Part (i) of Lemma 7.2. from [12] im-
plies that σ(b′1,...,b′kρ ) is the unique irreducible subrepresentation of νa−n+1ρ×
νa−n+2ρoσ′′. We emphasize that the proof of mentioned lemma in [12] relies
completely on Jacquet module methods and uses no conjectures, so can be
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applied in our case. This gives σ(b′1,...,b′kρ ) ↪→ L(νa−n+1ρ, νa−n+2ρ)oσ′′. Thus,

we obtain

rG̃L(σ(b′1,...,b′kρ )) ≤ (L(νa−n+1ρ, νa−n+2ρ) + νa−n+1ρ× ν−a+n−2ρ+

L(ν−a+n−2ρ, ν−a+n−1ρ))× rG̃L(σ′′).

Combining the previous inequality with (14), we get rG̃L(σ(b′1,...,b′kρ )) ≤ νa−n+1ρ

×rG̃L(σ′), which implies that σ(b′1,...,b′kρ ) is strongly positive.

Suppose b′kρ−n+2 > a−n+ 2 and that the unique irreducible subrepresen-

tation of νa−n+1ρ× δ([νa−n+2ρ, νb
′
ρ])×· · ·× δ([νaρ, νb

′
kρρ])oσcusp is strongly

positive for a− n+ 3 < b′ < b′kρ−n+2. We prove this for b′ = b′kρ−n+2.
We have

σ(b′1,...,b′kρ ) ↪→ νa−n+1ρ× νb
′
kρ−n+2ρ× δ([νa−n+2ρ, ν

b′kρ−n+2−1ρ])× · · · ×

δ([νaρ, ν
b′kρρ]) o σcusp

' ν
b′kρ−n+2ρ× νa−n+1ρ× δ([νa−n+2ρ, ν

b′kρ−n+2−1ρ])× · · · ×
δ([νaρ, ν

b′kρρ]) o σcusp.

The previous inductive assumption and part (iii) of Lemma 7.2. from [12]

imply σ(b′1,...,b′kρ ) ↪→ ν
b′kρ−n+2ρo σ′′′ for some irreducible strongly positive rep-

resentation σ′′′. This gives

rG̃L(σ(b′1,...,b′kρ )) ≤ (ν
b′kρ−n+2ρ+ ν

−b′kρ−n+2ρ)× rG̃L(σ′′′). (15)

Since b′kρ−n+2 > a−n+1, from (14) and (15) is easy to conclude that σ(b′1,...,b′kρ )
is strongly positive.

Up to now, we have proved our claim in the case when the observed

segment [νa−n+1ρ, ν
b′kρ−n+1ρ] contains only one representation. Suppose that

the claim holds if the segment [νa−n+1ρ, ν
b′kρ−n+1ρ] contains less than m rep-

resentations, i.e., if a − n + 1 + m > b′kρ−n+1. We prove it for b′kρ−n+1 =
a−n+1+m. In that case, σ(b′1,...,b′kρ ) can be written as a subrepresentation of

δ([νa−n+mρ, νa−n+1+mρ])×δ([νa−n+1ρ, νa−n+m−1ρ])×δ([νa−n+2ρ, ν
b′kρ−n+2ρ])×

· · ·× δ([νaρ, νb
′
kρρ])oσcusp. Part (ii) of Lemma 7.2. from [12] shows that this

representation has a unique irreducible subrepresentation. Now, the induc-
tive assumption implies σ(b′1,...,b′kρ ) ↪→ δ([νa−n+mρ, νa−n+1+mρ]) o σ′′′′, where
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σ′′′′ is an irreducible strongly positive representation. Looking at Jacquet
modules of the representation δ([νa−n+mρ, νa−n+1+mρ]) we may conclude in
the same way as before that σ(b′1,...,b′kρ ) is strongly positive. This completes

the proof.

5. Classification of strongly positive discrete series: general case

We use the results of the previous section to obtain the classification of
general genuine strongly positive discrete series. Proofs of the cases covered
in the fourth section help us shorten those in this one.

In this section, σ ∈ R(n) denotes the strongly positive discrete series.
Suppose σ ∈ D(ρ1, ρ2, . . . , ρm;σcusp), where ρi is a self-dual, irreducible, gen-

uine cuspidal representation of ˜GL(ni, F ), for i = 1, . . . ,m, σcusp ∈ R(n′)
an irreducible genuine cuspidal representation and m minimal. Let aρi ≥ 0
denote the unique non-negative real number such that the representation
νaρiρi o σcusp reduces.

The results obtained in the third section show that there exist strongly
positive genuine segments ∆1, ∆2, . . . ,∆l such that 0 < e(∆1) ≤ e(∆2) ≤
· · · ≤ e(∆l) and σ ' δ(∆1,∆2, . . . ,∆l;σcusp). In the following theorem we
describe these segments more precisely.

Theorem 5.1. Let ∆1, ∆2, . . . ,∆l be as in the previous discussion. Then the
representation δ(∆1)×· · ·× δ(∆l)oσcusp is isomorphic to the representation

(
m∏
i=1

ki∏
j=1

δ([νaρi−ki+jρi, ν
b
(i)
j ρi])) o σcusp (16)

where ki ∈ Z≥0, ki ≤ daρie, b
(i)
j > 0 such that b

(i)
j − aρi ∈ Z≥0, for i =

1, . . . ,m, j = 1, . . . , ki. Also, b
(i)
j < b

(i)
j+1 for 1 ≤ j ≤ ki − 1.

Proof. Let d ∈ {1, . . . ,m} be an arbitrary, but fixed integer. Since the
representation δ([νx1ρ, νy1ρ]) × δ([νx2ρ′, νy2ρ′]) is irreducible if ρ and ρ′ are
non-isomorphic, the representation δ(∆1)× · · · × δ(∆l) o σcusp is isomorphic
to the representation

δ(∆j1)× · · · × δ(∆js1
)× δ(∆i1)× · · · × δ(∆is2

) o σcusp,
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where {j1, . . . , js1} ∪ {i1, . . . , is2} = {1, . . . , l}, e(∆i1) ≤ · · · ≤ e(∆is2
), the

segments ∆i1 , . . . ,∆is2
consist of twists of ρd, while there are no twists of ρd

in the segments ∆j1 , . . . ,∆js1
. This yields that σ is the unique irreducible

subrepresentation of the representation

δ(∆j1)× · · · × δ(∆js1
) o δ(∆i1 , . . . ,∆is2

;σcusp).

The strong positivity of σ implies that δ(∆i1 , . . . ,∆is2
;σcusp) also has to be

strongly positive. Using Theorem 4.4 we get the desired conclusion.

It is now easy to see that minimality of m implies aρi > 0, for i =
1, 2, . . . ,m.

Using Theorem 5.1, we can prove the following theorem in the same way
as Theorem 4.5, the detailed verification being left to the reader.

Theorem 5.2. Suppose that the representation σ is isomorphic to both repre-
sentations δ(∆1,∆2, . . . ,∆l;σcusp) and δ(∆′1,∆

′
2, . . . ,∆

′
l′ ;σ

′
cusp), where ∆1, . . .,

∆l is a sequence of genuine segments such that e(∆1) = · · · = e(∆j1) <
e(∆j1+1) = · · · = e(∆j2) < · · · < e(∆js+1) = · · · = e(∆l) and σcusp ∈ R an ir-
reducible genuine cuspidal representation. Further, suppose that ∆′1, . . . ,∆

′
l′

is also a sequence of genuine segments, such that e(∆′1) = · · · = e(∆′j′1
) <

e(∆′j′1+1) = · · · = e(∆′j′2
) < · · · < e(∆′j′

s′+1) = · · · = e(∆′l′) and σ′cusp ∈ R an

irreducible genuine cuspidal representation. Then l = l′, s = s′, ji = j′i
for i ∈ {1, . . . , s}, σcusp ' σ′cusp and, for i ∈ {1, . . . , s} and js+1 = l,
the sequence (∆ji+1,∆ji+2, . . . ,∆ji+1−1) is a permutation of sequence (∆′ji+1,
∆′ji+2, . . . ,∆

′
ji+1−1).

Let us denote by SP the set of all strongly positive discrete series in
R. Write LJ for the collection of all pairs (Jord, σ′), where σ′ ∈ R is an
irreducible cuspidal representation and Jord has the following form:

Jord =
⋃n
i=1

⋃ki
j=1{(ρi, b

(i)
j )}, where

• {ρ1, ρ2, . . . , ρn} ⊂ Rgen is a (possibly empty) set of mutually noniso-
morphic irreducible self-dual cuspidal unitary representations such that
νa
′
ρiρi o σ′ reduces for a′ρi > 0 (this defines a′ρi),

• ki = da′ρie,
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• For each i = 1, 2, . . . , n, b
(i)
1 , b

(i)
2 , . . . , b

(i)
ki

is a sequence of real numbers

such that a′ρi−b
(i)
j ∈ Z, for j = 1, 2, . . . , ki, and −1 < b

(i)
1 < b

(i)
2 < · · · <

b
(i)
ki

.

Let (Jord, σ′) denote an element of LJ , where Jord =
⋃n
i=1

⋃ki
j=1{(ρi, b

(i)
j )}.

Then the induced representation

(
n∏
i=1

ki∏
j=1

δ([νa
′
ρi
−ki+jρi, ν

b
(i)
j ρi])) o σ′

has a unique irreducible subrepresentation. In this way, to each element
(Jord, σ′) ∈ LJ we attach an irreducible genuine representation in R.

According to Theorem 5.1, representation σ ∈ SP may be realized as
the unique irreducible subrepresentation of a representation of the form (16).
Observe that we may suppose ki = daρie because we are allowed to freely add

some empty segments by putting b
(i)
j = aρi−ki+j−1 if necessary. In this way,

to a strongly positive discrete series σ we attach a pair (Jord, σcusp) ∈ LJ ,

where Jord =
⋃m
i=1

⋃ki
j=1{(ρi, b

(i)
j )}.

We are ready to state and prove the main result of this paper.

Theorem 5.3. The maps described above give a bijective correspondence
between the sets SP and LJ .

Proof. Theorems 5.1 and 5.2 imply that we have obtained an injective map-
ping from SP to LJ . Now we prove its surjectivity.

Let (Jord, σ′) ∈ LJ , where Jord =
⋃n
i=1

⋃ki
j=1{(ρi, b

(i)
j )}. Theorem 3.4

implies that the induced representation

(
n∏
i=1

ki∏
j=1

δ([νa
′
ρi
−ki+jρi, ν

b
(i)
j ρi])) o σ′

contains a unique irreducible subrepresentation, which we denote by σ. Sup-
pose that σ is not strongly positive. Then there exists some embedding

σ ↪→ νs1ρi1 × · · · × νsrρir × · · · × νstρit o σ′

where sr ≤ 0. Frobenius reciprocity implies that the representation σ con-
tains νs1ρi1 ⊗ · · · ⊗ νsrρir ⊗ · · · ⊗ νstρit ⊗ σ′ in its Jacquet module.
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Clearly, ρir ∈ {ρ1, . . . , ρn}. There is no loss of generality in assuming
ρir = ρn. Exactness and transitivity of Jacquet modules, combined with the
fact that σ is an irreducible subrepresentation of the induced representation

(
n−1∏
i=1

ki∏
j=1

δ([νa
′
ρi
−ki+jρi, ν

b
(i)
j ρi])) o δ([νa

′
ρn
−kn+1ρn, ν

b
(n)
1 ρn], . . . , [νa

′
ρnρn, ν

b
(n)
kn ρn];σ′),

imply that δ([νa
′
ρn
−kn+1ρn, ν

b
(n)
1 ρn], . . . , [νa

′
ρnρn, ν

b
(n)
kn ρn];σ′) contains a repre-

sentation of the form νs
′
1ρn ⊗ · · · ⊗ νsrρn ⊗ · · · ⊗ νs

′
t′ρn ⊗ σ′ in its Jacquet

module. Now, using Lemma 26 from [1], which can be applied in our situation
(this is explained in full detail in the proof of Lemma 3.1 in [7]), and Frobe-

nius reciprocity, we deduce that δ([νa
′
ρn
−kn+1ρn, ν

b
(n)
1 ρn], . . . , [νa

′
ρnρn, ν

b
(n)
kn ρn];

σ′) is a subrepresentation of νs
′
1ρn × · · · × νsrρn × · · · × νs

′
t′ρn o σ′. This

contradicts Theorem 4.6 and shows that each element of LJ is attached to
some strongly positive discrete series.

The maps described above are obviously inverse to each other.
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